Development of Cost-Effective Ceramic and Refractory Components for Aluminum Melting and Casting

Dale Brown*, Greg Hodren*, Ron Ott**, Puja Kadolkar**,
Vinod Sikka**, Jeff Smith*** and Bill Fahrenholtz***

*Pyrotek, Inc. Trenton, TN

** Oak Ridge National Laboratory, Oak Ridge, TN

*** University of Missouri, Rolla, MO

Outline

- Issues
- Objective of research
- Research tasks
- Research / milestones completed
 - Microstructural characterization
 - Wetting and reactivity studies
 - Permeability
 - Glazes
 - Particle size distribution
- Near term future work / milestones

Issues

 Reaction of constituents in refractory materials with molten aluminum limits the useful life of refractory components.

 Permeability of ceramic/refractory products inhibits their ability to perform in casting applications requiring pressurization.

Objective

- Develop and validate new classes of cost-effective lowpermeability ceramic and refractory components for handling molten aluminum in both smelting and casting environments
- Develop materials and methods for sealing surface porosity in thermal shock-resistant ceramic refractories
- Optimize refractory formulations to minimize wetting by molten aluminum, and characterize erosion, corrosion, and spallation rates under realistic service conditions.
- Scale up the processing methods to full-sized components and field test in commercial aluminum casting shops.

Outcome of the Improved Material

- Reduced downtime through longer life
- Reduction in scrap through lower rates of erosion and particulate generation
- Reduction in the overall energy use by improving casting operations
- Enhancement in the performance of refractories in the aluminum, glass and chemical industries

Research Tasks

ORNL

- Characterization of the porosity in delivery tubes
- Develop and optimize the surface modification process to close the porosity
- Develop high temperature glazes to seal the porosity of the refractory
- Examine the compatibility of the glazes with molten aluminum alloys

UMR

- Evaluate the permeability of asreceived manufactured material utilizing a special designed permeameter at UMR
- Determine current particle size distribution of aggregate and optimize to obtain a continuous distribution to minimize permeability in castable formulations
- Evaluate the compatibility of the molten metal with the refractory and its wetting characteristics in both DFS and castable samples

Microstructural Characterization of the Slip Cast DFS Tubes

- No visual variation in the microstructure among the 3 sections
- 65% area fraction of dense SiO₂ particles
- 35% area fraction
 - Loosely packed small particles ranging from 5 μm on down in size

High magnification image of the matrix

Examination of Tubes which Reacted with Molten Aluminum

- Densified fused silica tubes
- Examined after use in Al-casting
- Reaction zones were found
 - Discrete points of initiation
 - Half-spherical shape
 - Dark gray color
- Approximately 10% of interior surface appeared to react
- No reaction zone penetrated through the thickness of the tubes that were examined

Reaction Zone Morphology

- Reaction zones were examined by SEM
- Morphology of grains did not change within the reaction zone

X-ray Mapping of Reaction Zone

X-ray Mapping of Reaction Zone

- Reaction zone is enriched in Al
- Si is almost completely removed from reaction zone
- O is depleted, but not removed from reaction zone
- XRD confirms the presence of Al and Al₂O₃ in reaction zone
- Reaction is thermodynamically favorable $\Delta G_{rxn} = -544 \text{ kJ at } 700^{\circ}\text{C}$

Wetting and Reaction Studies

- Replication of reaction under experimental conditions
 - Flowing argon (inert atmosphere)
 - 356 Al alloy placed on tube section
 - 1200°C for 1 hour
 - Produces comparable reaction

SEM micrograph

Permeability Measurement

- Full scale permeameter capable of measuring permeability of the full scale tube has been developed
- Formula developed to measure permeability
 - Assumptions
 - System obeys Darcy's Law
 - Constant thickness cylinder

Pressure Decay Data

- Permeability is constant
- •Previously coated tubes have shown a 67% improvement in permeability

High Density Infrared Plasma Arc Lamp Processing

- Samples treated with HDI under varying processing conditions
- HDI Plasma melted the surface of the specimens forming a dense layer of SiO₂
- Tailor the melt zone depth with the amperage and time exposure
 - Decrease current and increase time – more uniform melt zone

Melt Zone Depth

104,000 Joules - Side view

40,000 Joules - Top view

Joules	Melt Zone Depth (mm)		
20,800	0.01		
40,000	1.7		
104,000	3.5		

X-ray Diffraction of Melted Zone

Maintain the amorphous structure after processing the surface with the plasma arc lamp

Glazes

- Commercially available glazes(generally oxide glazes) have coefficient thermal expansions much greater than fused SiO₂ (0.5x10⁻⁶/°C)
 - Higher CTE glaze can undergo spallation during heating
 - Difficult to obtain an amorphous glaze to match
 - Semicrystalline glazes
- Semicrystalline Glazes
 - Structure consists of low thermal expansion crystalline phases in a glassy matrix
 - Thermal expansion of semicrystalline (glass-ceramic) materials can be tailored depending on the crystalline phases present
 - Crystalline phases present are attributed to the thermal history

Selection of glazes

- Identified 8 glazes from literature
 - Selected these 4 based on:
 - Low CTE
 - Low reactivity with molten aluminum
 - (Oxide Weight %)

Oxide	(1)	(6)	(7)	(8)
Al_2O_3	29.2	23.19	11.29	14.79
B_2O_3	5			
CaO		3.05	4.56	5.96
K ₂ O	5			
Li ₂ O	11.3	4.53	3.31	4.34
MgO		6.58	3.27	4.28
SiO ₂	49.5	62.65	47.48	53.83
ZnO			30.9	16
CTE	-0.9	1.3	0.34	0.36

CTE from literature

Firing and Heat Treatment

Glaze	Firing Schedule °C/h	Heat Treatment Schedule °C/h	Heating Rate	Crystalline Phases Expected	∆Grxn (kJ @ 700°C)
1	1094/0.25	788/0.50	20 °C/min	β-spodumene ss	-142
		850/5	3 °C/min	β-spodumene ss, β-eucryptite ss, clinopyroxene	-142
6 1500	1500/4	1500/4 1050/3	3 °C/min		-72
7 1450/3.5		660/4	3 °C/min	β-spodumene ss,	-142
	1450/3.5	1450/3.5 900/3	3 °C/min	β-eucryptite ss, Willemite	-72 -416
8	1450/3	660/4	3 °C/min	β-eucryptite ss,	-72
		780/3	3 °C/min	Willemite Diopside	-416

^{•∆}Grxn = -544 kJ at 700°C for the reaction of fused silica and molten Al

Optical Micrographs

Glaze 1 Glaze 6

Glaze 7

Glaze 8

IMF Annual Review Meeting, Golden CO June 23-25, 2003

Higher Magnification Images of Glazes

Glaze 6

SX-20911 15.0kV 15.5mm x2.01k SE(L) 20.0um

Glaze 7

Glaze 8

Glazes

- All glazes seem to be adherent to fused silica
- X-ray show the crystalline structure of the glazes
- Thermal cycling of glazes
 - Any significant CTE mismatch would have been immediately obvious
 - Glazed samples were subjected to 2 heating cycles
 - Heat up to 700°C @ 100 °C/min
 - Held at 700 °C for 10 minutes
 - Cool to room temperature at the same rate
 - Preliminary results show that all 4 glazes are still adherent to fused silica
 - No spalling or cracks observed

X-ray Phase Analysis of Substrates with Glazes

- Due to higher heating temperatures and times for glazes
 6, 7, and 8
 - Crystalline cristobalite was formed in the fused silica substrate, which is undesirable due to the large change in volume

SEM Micrographs (Glaze 1)

Interface - low mag

Glaze

Interface - high mag

Fused Silica

IMF Annual Review Meeting, Golden CO June 23-25, 2003

X-ray Mapping (Glaze 1)

Glaze material does not diffuse into the substrate – maybe some K

X-ray Phase Analysis (Glaze 1)

Microhardness (Glaze 1)

Particle Size Distribution for Optimal Particle Packing - Castable Tubes

- 90% fused silica, ~5% fine alumina, ~5% cement, ~4-5% non-wetting agent
- Different particle size distributions are used in fabricating ceramics
 - Monosized yields ~60% dense
 - Bi-modal yields ~85% dense
 - Tri-modal yields ~90% dense
 - Continuous (Funk and Dinger and Andreasen models)
 - Potential to achieve near full density distributions

$$CVPFT = \frac{D^n - D^n_s}{D^n_I - D^n_s}$$

(after Funk and Dinger)

Three Parameter Continuous PSD

n: distribution modulus typically chosen 0 < n < 1 larger values...coarser design n=0.37 for theoretical maximum density

 D_s : smallest particle size considered

 D_l : largest particle size considered

Particle Size Distribution (Castable)

Computer model for selection of optimum aggregate to minimize permeability

Castable Formulations

- High Density / Low Water Demand Castables
 - Optimize particle size using continuous distribution
- Required Data for Each Component
 - Particle size distribution
 - All sieves in series is optimal for aggregates
 - Laser or other similar technique for fine particles
 - Theoretical density and surface area
 - Complete chemistry
- Experience / Equipment Based Constraints
 - Batch size range
 - Desired overall chemistry
 - Cement content
 - Additive content
 - Top particle size

Initial Formulation vs. Target PSD

Deviation Within Each Size Class

Blend and Target PSD - % in Class

Size Class

Formulation – No Constraints

Blend and Target PSD - CPFT

Must be cautious of results – might propose impractical solution

Unconstrained Formulation – Size Class Deviation Blend and Target PSD - % in Class

Near Term Future Work / Milestones

- Glazes Dense Fused Silica
 - Monolithic samples of the glazes to measure CTE
 - Glazes on fired and green state specimens
 - Fired under tube firing schedules (1160°C for 3.5 hrs)
 - Side by side comparison of the glaze on the fired and the unfired specimens
 - Microscopic analysis, hardness and phase analysis
 - Wettability and reactivity of glaze with molten Al
 - Measure permeability
 - Iterative process: vary glaze content and firing schedule to tailor CTE and non-wetting characteristics
- Particle Size Distribution Castable Formulations
 - Optimize Castable Formulations
 - Evaluate Formulations
 - Water demand
 - Density / Porosity
 - Permeability
 - Strength

Near Term Future Work / Milestones

- Extend laboratory results to field
 - Applying the suitable glaze to a full scale tube
 - Permeability of the glazed tube
 - Wetting and reactivity with Al
 - Testing in Industrial Partner's facility
- Apply findings to other areas
 - Optimize particle size distribution of refractories used in other areas of primary and secondary aluminum facilities
 - Identify glazes for application to refractory components with different CTE's